Каталог статей /

Актиноиды :: Соединения

Актиноиды · Изучение и синтез · Изотопы · Распространение в природе · Получение · Cвойства · Соединения · Применение · Токсичность · Галерея · Примечания · Литература ·


Оксиды и гидроксиды

Для некоторых актиноидов известно несколько оксидов: M2O3, MO2, M2O5 и MO3. Для всех металлов оксиды M2O3, MO2 и M2O5 — основные, а MO3 — амфотерные. Более выражены основные свойства оксидов. Они легко соединяются с водой, образуя основания:

~\mathrm{M_2O_3+3H_2O \longrightarrow 2M(OH)_3}.

Данные основания плохо растворяются в воде, а по своей активности близки к гидроксидам редкоземельных металлов. Наиболее сильным из этих оснований является гидроксид актиния. Актиний сравнительно легко взаимодействует с водой, вытесняя водород. Все соединения актиния, кроме его чёрного сульфида (Ac2S3), имеют белую окраску.

Оксиды четырёхвалентных актиноидов кристаллизуются в кубическую сингонию, структура кристалла типа флюорита (фторид кальция).

An — актиноид(-ы)

Торий, соединяясь с кислородом, образует лишь диоксид. Его можно получить при сжигании металлического тория в кислороде при температуре в 1000 °C, или нагреванием некоторых его солей:

~\mathrm{Th+O_2 \ \xrightarrow{1000^\circ C} \ ThO_2}

Диоксид тория является тугоплавким веществом (температура плавления 3220 °C), очень стоек к нагреванию. Из-за этого свойства диоксид тория в некоторых случаях используют в производстве огнеупорных материалов. Добавление 0,8—1 % ThO2 к чистому вольфраму стабилизирует его структуру; поэтому волоски электроламп имеют лучшую устойчивость при вибрациях.

Диоксид тория — основный оксид, но непосредственно при реакции металла с водой он не получится. Чтобы растворить ThO2 в кислотах его сначала нагревают до температуры 500—600 °C. Более сильное нагревание (выше 600 °C) способствует получению очень стойкой к кислотам и другим реагентам структуры ThO2. Небольшая добавка фторид-ионов катализирует растворение торий и его диоксида в кислотах.

Слиток саморазогретого диоксида  плутония-238 .
Слиток саморазогретого диоксида плутония-238.

У протактиния получено два оксида: PaO2 (чёрный) и Pa2O5 (белый). Первый из них изоморфен с ThO2. Легче получить Pa2O5. Оба оксида протактиния основные. Для пятивалентного протактиния можно получить Pa(OH)5 — слабое плохо растворимое основание.

При разложении некоторых солей урана можно получить оранжевый или жёлтый UO3. Этот оксид является амфотерным; он непосредственно получается при взаимодействии с водой и создает несколько гидроксидов, из которых наиболее стабильным является UO2(OH)2.

При реакции оксида урана(VI) с водородом получается диоксид урана, который схож по своим свойствам с ThO2. Этот оксид также является главным. Ему соответствует тетрагидроксид урана (U(OH)4).

Плутоний, нептуний и америций образуют оксиды двух типов: M2O3 и MO2, которые обладают основными свойствами. У кюрия получены белый Cm2O3 и чёрный CmO2, у калифорния — Cf2O3. Оксиды остальных актиноидов плохо изучены. Триоксид нептуния является менее стойким, чем оксид урана, поэтому он не получен в чистом виде (только Np3O8). В то же время, хорошо изучены оксиды плутония и нептуния с химической формулой MO2 и M2O3.

Оксиды новых элементов часто исследуются первыми, что связано с их большим значением, лёгкостью получения и с тем фактом, что оксиды как правило служат в качестве промежуточных соединений при получении других веществ.

Соли кислот

Металлы-актиноиды хорошо соединяются с галогенами, создавая соли MHa3 и MHa4 (Ha — галоген), так был получен хлорид калифорния. В 1962 году было синтезировано первое соединение берклия — BkCl3 в количестве 0,000003 мг.

Зелёный кристалл трибромида калифорния.
Зелёный кристалл трибромида калифорния.

Подобно галогенам редкоземельных элементов хлориды, бромиды и иодиды актиноидов растворяются в воде, а фториды — нерастворимы. У урана сравнительно легко получить бесцветный гексафторид, который способен возгоняться при температуре в 56,5 °C. Из-за легкости UF6 его применяют при разделении изотопов урана диффузным методом.

Гексафториды актиноидов по свойствам приближаются к ангидридам. В воде они гидролизуются, образуя MO2F2. Также были синтезированы пентахлорид и чёрный гексахлорид урана, но они оба являются нестабильными .

При воздействии кислот на актиний, торий, протактиний, уран, нептуний и пр. получаются соли. В случае, если на них действовать кислотами-неокислителями, обычно, можно получить соли низкой валентности металлов:

~\mathrm{U+2H_2SO_4 \longrightarrow U(SO_4)_2+2H_2}
~\mathrm{2Pu+6HCl \longrightarrow 2PuCl_3+3H_2}

Но в тоже время в ходе данных реакций восстанавливающий водород может реагировать с самим металлом, образуя соответствующий гидрид металла. С кислотами и водой уран реагирует значительно легче, чем торий.

Хлориды трёхвалентных актиноидов кристаллизуются в гексагональную сингонию.

*An — актиноид(-ы)

Соли актиноидов легко получаются при растворении соответствующих гидроксидов в кислотах. В свою очередь, нитраты, хлориды, перхлораты и сульфаты актиноидов могут растворяться в воде. Из водных растворов эти соли кристаллизуются, образуя гидраты, к примеру:

  • Th(NO3)4·6H2O,
  • Th(SO4)2·9H2O,
  • Pu2(SO4)3·7H2O.

Ещё одним свойством этих соединений является способность солей актиноидов высшей валентности к легкому гидролизу. Так, бесцветные средние сульфат, хлорид, перхлорат, нитрат тория в растворе быстро переходят в основные соли с химическими формулами Th(OH)2SO4, Th(OH)3NO3.

Трииодид эйнштейния.
Трииодид эйнштейния.

Своей растворимостью соли трехвалентных и четырёхвалентных актиноидов подобны солям лантаноидов. Как и для лантана и его аналогов, плохо растворяются в воде фосфаты, фториды, оксалаты, иодаты, карбонаты актиноидов. В этом случае почти все плохорастворимые соли осаждаются в растворе в виде кристаллогидратов, например, ThF4·3H2O, Th(CrO4)2·3H2O.

Актиноиды со степенью окисления +6, кроме катионных комплексов типа ~\mathrm{MO^{2+}_2}, создают анионы [MO4]2-, [M2O7]2- и некоторые более сложные соединения. К примеру, у урана, нептуния и плутония известны соли типа уранатов (Na2UO4) и дитиуранатов ((NH4)2U2O7).

По сравнению с лантаноидами, актиноиды лучше создают координационные соединения. Способность к образованию комплексных соединений у актиноидов увеличивается с увеличением валентности металла. Трёхвалентные актиноиды не образуют фторидных координационных соединений, в то время как четырёхвалентный торий образует соли типа K2ThF6, KThF5 и даже K5ThF9. Для данного металла легко можно получить соответствующие сульфаты, например Na2SO4·Th(SO4)2·5H2O, нитраты, тиоцианаты. Соли с общей формулой M2Th(NO3)6·nH2O имеют координационную природу, в них у тория координационное число равно 12. Ещё легче комплексные соли создают пятивалентные и шестивалентные актиноиды. Достаточно стойкие комплексы образуют торий и уран с роданид-ионами. Эти комплексы имеют повышенную стойкость в неводных растворителях.

Также стоит отметить, что наиболее устойчивые координационные соединения актиноидов — четырёхвалентные торий и уран — получаются при реакции с дикетонами, например с ацетилацетоном.

  • Russian to English Russian to German Russian to French Russian to Spanish Russian to Italian Russian to Japanese

Информация на сайте из открытых источников. Основа ВикипедиЯ. | Пожалуйста, внимательно прочитайте эту страницу!